
 

 

  
Abstract— Restricted    load powers, two–valued regulation 

characteristics, and interference of several loads is observed in power 
supply systems with limited power of voltage source.    

   In this paper a geometrical approach is presented for 
interpretation of changes or “kinematics” of load regimes; the 
definition of load regime parameters and regulators (in the relative 
and invariant form through different parameters) is grounded; 
suitable geometrical transformation groups, which describe the 
movement of an operating point along regulation trajectories, are 
proposed. To simplify the task and to reveal a matter of principle, the 
static regulation characteristics and idealized models of voltage 
regulators are considered.   

Non-Euclidean geometry is a new mathematical apparatus in the 
electric circuit theory, adequately interprets “kinematics” of circuit, 
and proves the introduction and definition of the proposed concepts.  

The obtained results are useful for the electric circuit theory 
education and a coordinated control of load voltage.  

 
Keywords—Load influence, projective transformation, regulated 

characteristic, voltage source.  

I. INTRODUCTION 
HE limitation of load powers, two-valued regulation and 
load characteristics are appeared in power supply systems 

with limited capacity voltage sources. If such a power supply 
contains some  quantity of loads with individual voltage 
regulators,   the interference of loads takes place [1].   
Distributed, autonomous or hybrid power supply systems with 
solar cells, fuel elements, and  storage energy modules 
(battery, ultra capacitor) can be examples of such systems [2]–
[4]. At the same time, the storage module represents a voltage 
source (with some internal resistance), which influences on 
load regimes also. 

Therefore, it is necessary to take into account the internal 
resistance of voltage sources, to carry out analysis of the load 
interference, and obtain relationships for the definition of the 
regime and regulation parameters, for example, at a possible 
coordinated predictive control for preset load regimes [5]–[8]. 

But for that, it is desirable correctly or reasonably to 
determine the load regime parameters and regulators using 
admissible area of changes of the load voltage and load 
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resistance; that is, to present the regime parameters in the 
normalized or relative form, using the parameters of 
characteristic regimes.  In this case, the two-valued 
characteristics are eliminated. 

To simplify the solution of this task and to reveal a matter of 
principle of this influence, it is expediently to consider the 
static regulation characteristics and idealized models of 
voltage regulators. Therefore, this problem relates to the 
electric circuit theory with changeable load regimes. 

In the present paper, the results of interpretation of changes 
or “kinematics” of load regimes are used on the base of the 
conformal plane, hyperbolic, and projective geometry [9]. In 
this work, the definition of the load regime parameters and 
regulators (in the relative and invariant form through different 
parameters) is grounded; some geometrical transformations, 
which describe the movement of an operating point along 
regulation trajectories, are used.   

II. ANALYSIS OF VOLTAGE STABILIZATION REGIMES OF LOADS 

Let us present the necessary results [9]. To do this, we 
consider a power supply system in Fig.1.  

 
Fig.1 Power supply system with two voltage regulators 21,VRVR   

and loads 21, RR  
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The power supply system includes two idealized regulated 
voltage converters (voltage regulators) 21,VRVR , and load 

resistances 21, RR .  Generally, the voltage converters with a 
switched tapped secondary of transformers, multicell or 
multilevel converters, PWM  converters, and so on can be 
examples of these regulators. The regulators define the 
transformation ratios 21,nn . At the same time, the internal 

resistance iR  determines the interference of the regulators on 
load regimes. 

A. Case of one load 

In this case, the transformation ratio 02 =n . Let us obtain 
an equation describing behavior or “kinematics” of this circuit 
at change of the parameter 1n . 
By definition,  

U
Un 1

1 = .                                                                              (1)                                                 

Load power 
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2
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1 R
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On the other hand, this power 
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 For different values 1R ( 1
1R , 2

1R and so on), this expression 
represents  a bunch of circles (ellipses) by coordinates 

UU ,1 in Fig.2. 

Let   a stabilized load voltage  =1U  be given.      Then, the 

vertical line with coordinate =1U    intersects the bunch of  
circles in two points generally.     At the same time, the 
transformation ratio or variable   1n   is resulted by the 
stereographic projection of   circle’s points from the bottom 
pole  0,0  on the tangent line at the upper pole [10].   For 

example, the load resistance  1
1R   corresponds to the variable 

1
1n .                                                                

For minimum value of load resistance min1R  , the circle is 
tangent to the vertical line. In this case, the voltage 

05.0 UU = .   
 

 
 
Fig.2  Stereographic projection of bunch of the ellipses  

),( 11 RUU  on the line 1n                                                          
  

 
Using (2), we get the corresponding condition  
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Then, the minimum value of the load resistance   
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Also, the respective maximum allowable transformation 

ratio   

0

1
max1 2

U
Un == .                                                                    (4)                                                                         

 
The operating area of all the circles must be above the 

diameters of these circles; that is, 2/0UU ≥ . Therefore, we 
use the upper point of the intersection. In other words, on 
some step of switching period at increase of the parameter 1n , 
a running point can pass over the diameter that is inadmissible. 
Therefore, it is better to use such groups of transformations or 
movements of points along the line 1n   when it is impossible to 
move out the running point over the diameter. So, we must 
decrease the next values 1n  by some rule. In this sense, we 
come to hyperbolic geometry. 
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A.1 Use of hyperbolic geometry 

Let us consider the functional dependence ),( 111 =UnR , 

where the voltage =1U is a parameter. Similarly to [9], we 
must validate the definition of regime and its changes; find the 
invariants of regime parameters. To do this, we consider such 
a characteristic regime as ∞=1R . In this case, the ellipse 

degenerates into the two straight lines, 0=U , 0UU = . 

Then, for the voltage 0UU =  , the transformation ratio 

0

1
1 U

Un =
∞ = .                                                                          (5)                                                                             

However, the question arises about the range of transformation 
ratio as ∞<< 110 nn . According to Fig.2, this range 

corresponds to the negative load value 01 <R and expression 
(2) determines a hyperbola. In this case, the load gives back 
energy and the voltage source 0U consumes this energy as 
shown in Fig.3. 

 

 
Fig.3 Negative load 01 <R gives back energy 

 
In this regard, we consider a physical realization of such a 

power source, as a negative resistance  1R− . For this 
purpose, we remind something of the electric circuit theory by 
the example of a circuit in Fig. 4(a). Let a voltage source be 
connected to a resistance 1R , then the negative resistance 

1R− and the drain current 1I will be corresponding to this 
voltage source. We consider Fig.3 again. Then, it is possible to 
connect up the voltage source 1U instead of the resistance 

1R− .  At the same time, the input resistance of this circuit 

must be equal to the constant value 1R at change of the 

voltage value 1U .  Such condition is satisfied due to the 

variable value 1n ; there is a loss-free resistance [11]. The 
example of another circuit, as a high-power-factor boost 
rectifier, is given in Fig.4(b) [12].  

 
 

(a)                                                            

 
 (b) 

 
Fig.4 Realization of a negative resistance: the negative resistance 

1R−  corresponds to a source 1U - (a); a boost PWM converter 

with the constant input resistance 1R - (b) 

 
 

Taking into account (1), (2), we obtain                                                                                                                                          
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Thus, we get the required relationships )( 11 Rn , )( 11 nR   
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where the voltage value == 11 UU is a parameter. The 

dependence )( 11 nR determines a hyperbola in Fig.5. 
We have a single-valued mapping of hyperbola points on 

the  axis 1n . This projective transformation preserves a cross 
ratio of four points [13]. Similarly to [9], let us constitute the 
cross ratio 1

nm  for the points max11
1
1 ,,,0 nnn ∞  
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                                              (8)                                                                                                                                                                             

The points max1,0 n  are base ones and point ∞1n is a unit one. 

The point 1
1n is a point of an initial or running regime. 
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Fig.5  Hyperbola )( 11 nR   

 
 

Using (4), (5), we get  
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The conformity of points 1
1n , 1

nm  is shown in Fig.6. In this 

case, the value 1
nm is a nonhomogeneous (or non-uniform) 

coordinate of the value 1
1n . Further, the cross ratio 21

nm , 

which corresponds to a regime change 2
1

1
1 nn → , has the form 
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Using normalized values 
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1
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1
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2
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n
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we get the regime change (segment  1
1

2
1 nn ) or cross ratio  

(10) in the view 
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Fig.6 Conformity of different regime parameters  

 
 

                                                                                                                                       
 Similarly to [9], we can obtain the analogous expression for 

the change 21
1n of the transformation ratio so that the following 

relationships are performed 
 

1
1

21

21
21
1 +

−
=

n

n

m
mn , 21

1

21
121

1
1

n
nmn −

+
= .                                       (12)                                                           

 
For this purpose, we make substitution of variables that to 

use ready expressions [9]. Let us introduce the value 

12~
11 −= nn .                                                                     (13)                                            

 
The conformity of these variables is shown in Fig. 7. 

According to [9], the change 21
1

~n has the form 
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Fig.7 Conformity of the normalized transformation ratio 1n and a 

new variable 1
~n  

 
 
Using substitution of variables (13), we get  
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In this expression the changes of the variables are equal to 
among themselves 

21
1

21
1

~ nn = .    
 
There are the following bases for this equality. Linear 

expression (13) preserves a cross ratio and, consequently, the 
regime change 21

nm . On the other hand, the change of the 

transformation ratio 21
1n is expressed by regime change (12). 

Using (14), we obtain the subsequent value 2
1n of the 

transformation ratio  

)12(1
)1(

1
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21
1
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nn
nnn .                                                     (15)                                         

 
There is a group transformation. Moreover, if the initial value 

11
1 =n , then the subsequent value 12

1 =n  regardless of the 

value 21
1n . Therefore, movement of a point is realized in 

hyperbolic geometry [14]. 
 Similarly to the above, let us consider the cross ratio for the 

load resistance 1R .   Using the dependence )( 11 nR  by Fig.5, 

we demonstrate the conformity of the variables 11 ,nR  in 

Fig.6.   The cross ratio for the initial point 1
1R , relatively to the 

base points min1,0 R , and a unit point ∞=1R has the form 
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Expression (16) equals the corresponding cross ratio for the 
conductance 11 /1 RY = and load current 111 / RUI == . The 
following equality takes place 

2)( nR mm = .                                                                     (17)                                                           
 

This expression leads to identical values if we use the 
hyperbolic metric to determine the regime value as the 
distance 

nR mLnmLnS 2== .                                                     (18)                                                      
 

This distance values are also shown in Fig.6. The base 
points min1,0 R correspond to infinitely large distance. 

Similarly to (10), the cross ratio 21
Rm , which corresponds to 

a regime change 2
1

1
1 RR → , has the view 
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We can introduce the change 21

1R of the load resistance by 
the following expression 
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Further, we use the normalized values  
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Similarly to (14), we get 
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 Then, there is a strong reason to introduce the changes of 

the load resistance 21
1R and the transformation ratio 21

1n  as 
expressions (21), (14). 

 
The validity of such definitions for changes is confirmed by 

the following expression similar to initial expression (6) 

221
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+
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Using (21), we obtain the subsequent value 2
1R of the load 

resistance 
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As well as (15), if the initial value 11
1 =R , then the 

subsequent value 12
1 =R  regardless of the value 21

1R . 
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Thus, the concrete kind of a circuit and character of regime 
imposes the requirements to definition of already system 
parameters.  

Therefore, arbitrary and formal expressions for the regime 
parameters are excluded. 

 
A.2  Example  

Let the circuit parameters be given as follows 
50 =U , 1=iR , 5.21 ==U . 

Herein after, the value dimensions are not specified. 
The initial and subsequent value of the load resistance 

0.21
1 =R ,  25.12

1 =R . 
The minimum value of load resistance (3) 
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The values of the transformation ratio by quadratic equation 
(7) 
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The normalized values are equal to these ones. 
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Change (14) of the transformation ratio 
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Now, we consider the cross ratio for the load resistance 1R .    

Cross ratio (16) for the initial regime 
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Let us check equality (17)  
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Cross ratio (19) for the regime change 
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The equality takes place also 
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Change (21) of the load resistance  
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B. Stabilization of voltage of two loads 
 Let us consider a circuit with two loads in Fig.1. Variation 

of one of loads leads to mutual change of stabilization regimes 
for both loads. Therefore, it is necessary to change the 
transformation ratios  21 ,nn in coordination. We will obtain 
the required relationships. 

Equation (2), taking into account the second load power, 
becomes as 

42

2
0

2
02

2
2

2
1

1

UUUU
R
RU

R
R ii =






 −++ .                          (24)                                                      

 
By definition, 
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Using (24), (6), and (25), we get the system of equations  
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It follows that  
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By definition (25)  
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2
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Substituting this expression in the first equation of system 
(27), we get  
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The expression in the square brackets is the total resistance 
(conductance) of both loads relatively to the first load  
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If, for example, the load voltages are equal to among 

themselves, 12 UU = , then these loads are connected in 
parallel and  
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Finally, we get the expression  
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This expression corresponds to (7) and the dependence 

)( 1nRT coincides with Fig.5. 
Therefore, for given load resistances, we determine: 

 total resistance (30), the transformation ratio 1n (as the 

solution of (31)), and the value 2n  (by (28) or by the second 
equation of (27)).  
Also, we must to check stability conditions (3), (4). In this 
case, these conditions have the form   
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Further, it is possible to use the above idea of hyperbolic 

geometry in the case of one load. 

III. GIVEN VOLTAGE FOR THE FIRST VARIABLE LOAD AND 
VOLTAGE REGULATION OF THE SECOND GIVEN LOAD 

Let us consider the general case for operating regime of a 
circuit in Fig.1. Let the first load voltage =1U  be given 
invariable and resistance of this load be changed. Moreover, 
the first load resistance can be both positive 01 >R and 

negative 01 <R . At the same time, the second constant load 

resistance is positive, 02 >R .  
For example, pulse regulators in Fig.8 correspond to the 

positive load 01 >R and regulators in Fig.9 conform to the 

negative load 01 <R . 

 
Fig.8 Power supply system with invariable values =1U and 2R  

 
    At first, we consider expression (24) in coordinates   

UUU ,, 21 with parameter 1R . 

If  01 >R , expression (24) represents a sphere (ellipsoid) 
similarly to the circle in Fig.2.  Both loads    consume energy; 
the voltage source 0U  gives energy.                                                              

If 01 <R , this expression realizes one-sheeted hyperboloid in 
Fig.9(b). The first load, as a constant voltage source, gives 
energy.  In addition, the voltage source 0U  , as a storage 
energy module, can consume and give back energy. The 
direction of current flow 0I determines these regimes. 

For different values 1R , expression (24) represents a bunch 

of spheres or hyperboloids. If ∞=1R , as open circuit 
regime, surface (24) degenerates into  cylinder. 

Let us now return to the general case for operating regime; 
that is,  

== 11 UU , constR =2 . 
 
For realization of this regime, it is necessary to change the 
transformation ratios  21 ,nn in coordination.  
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(a) 

 

 
(b) 

Fig.9 Power supply system with voltage source =1U - (a) and its 
geometrical model - (b) 

 
 

At it is, the plane with parameter =1U  intersects the bunch 
of spheres and hyperboloids. As a result of this section, the 
bunch of circles in coordinates UU ,2 are obtained, as it is 
shown in Fig.10(a). In this case, expression (24) has the form 
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R
R ii .                            (33)                                       

  
The second member of this equation is a radius of circle for 
the given value 1R . It is possible to consider the change of the 

voltage 2U as a rotation of radius-vector. This rotation 

determines the movement of a point along the line =1U  in  

coordinates UU ,1 in Fig.10(b); this figure at 02 =U is 
analogous to Fig.2. In the given case, the bunch of these 
surfaces rotates around the diameter 2/0UU = , as it is 
shown by closed arrows. Also, the transformation ratios 

21, nn  are resulted by the stereographic projection of sphere’s  

           
(a)   

                                                                 

 
(b) 

 
Fig.10 Bunch of circles at =1U  - (a) and bunch of curves at 

02 =U - (b) 

 
points on the tangent plane or conformal plane [15]. The axes 

21, nn  are superposed in Fig.10(b).      
Further, we use the first equation of system (27) 
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This equation circumscribes the trajectories of change 

21, nn for different values 1R , as it is shown in Fig.11. These 
trajectories are characteristic for a conformal plane [15].  

If 01 >R , the bunch of circles with parameters 2
1

1
1 , RR is 

obtained. For ∞=1R , equation (34) corresponds to a 
parabola 

01
1

012
2

2

=+−
U
Unn

R
Ri  .                                                    (35)                                 

The case 01 <R conforms to a hyperbola. For limit values 

01 =R and 01 =n , the hyperbola degenerates and coincides 

with the axis 2n . 

 
 

Fig.11 Trajectories of change 21, nn for different values 1R  

 
  
The rotation of radius-vector in the plane UU 2  

determines the analogous rotation in the plane 21 nn with the 

centre max1n . This centre corresponds to the minimum load 

resistance min1R . 

Let us found these values max1n , min1R . We assume the 

value 02 =n in expression (34). The obtained quadratic 
equation has the view 

01
1

012
1

1

=+−
U
Unn

R
Ri

.                                                     (36)                               

 
The roots coincide for the load resistance and 

2
0

2
1

min11 4
U
URRR i

=== . 

Using (36), we get 

0

1
max1 2

U
U

n == . 

 These values coincide with (3) and (4) for one load. 
Next, we display the voltage value 2U  on the trajectories in 

Fig.11.Using definition (25), we obtain the relationship 

== 1
1

2
2 U

n
n

U . 

Therefore, the voltage value 2U  is directly proportional to 

the voltage value 1U  at a constant value 12 / nn ; that is, we 
have a straight line, which intersects the bunch of circles with 

parameters 1R  in two points. Then, the tangent line to the 
circle (curve) determines the point of maximum voltage 
value max2U  and the voltage 2/0UU = .  
In this case, we get 
 

1

min120
max2 1

2 R
R

R
RUU

i

−= , 

1

min12
max2 1

R
R

R
Rn

i

−= .                                                (37) 

 
It is interestingly to note that all these tangent lines to the 

curves correspond to the value max1n . Therefore, the operating 
area of the transformation ratio is limited by the value 

max11 nn ≤ .  So, we must decrease the next value 1n (for the 
next regulator switching period) by some rule. In this sense, 
we come to hyperbolic geometry.  

A.  Use of hyperbolic geometry 
The straight line max1n in the plane 12 nn is the line of 

infinitely. Therefore, geometry of the half plane 

max112 , nnn ≤  in Fig.11and normalized half plane in 
Fig.12(a) corresponds to Poincare’s model of hyperbolic 
geometry for the half plane 0, 12 ≥gg with projective 
coordinates in Fig.12(a) and orthogonal coordinates in 
Fig.12(b) [14]. 

In Poincare’s model of hyperbolic geometry, the half-rounds 
with the given resistance 1R  intersect the axes 2g  
orthogonally. Let us introduce this geometry. To do this, it is 
necessary to change the variables ),(),,( 211212 ggnggn so 

that all curves of the plane 12 nn  are converted into circles of 

the plane 12 gg .  
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 190



 

 

 
(a) 

 
(b) 

 
Fig.12 Poincare’s model of hyperbolic geometry: superposed half 
planes 1, 12 ≤nn and 0, 12 ≥gg  - (a); half plane with 

orthogonal coordinates 0, 12 ≥gg - (b) 

 
 
Further, we use the normalized values of the transformation 

ratios 

max1

1
1 n

nn = , 
refn

nn
2

2
2 = . 

As a scale value refn2 , we can use a circle with some 

characteristic value of the parameter 1R .  The resistance value 

∞=1R  can be such a characteristic value.  

Using (35) and value max1n , we get 

i
ref R

Rn 2
2 = .                                                                   (38)                                 

It is possible to represent expression (34) in the normalized 
form 

012 1
2
2

2
1

1

min1 =+−+ nnn
R

R
.                                          (39)                              

 
The required    change of variables has the view 

1

2
2

1
1 1

,
1

1
g

gn
g

n
+

=
+

= .                                               (40)                                 

 
Let us check the offered expressions. In this case, equation 
(39) transforms into the equation of circle 

2
1

1

min12
2

2
1 1 r

R
Rgg =−=+ .                                               (41)                            

The second member of this equation is a radius squared for the 
given value 1R .  We can term the variables 21, gg as 
hyperbolic transformation ratios. This geometric model allows 
to use a cross ratio for determination of regimes and their 
change.      

B. Regime change for the given load resistance 1R  

For clarity, let us consider the half-rounds with a 
parameter 1

1R in Fig.13. Let points gC1 , gD1 be the points of 

an initial and subsequent regime. Then, the cross ratio, which 
corresponds to the regime change gg DC 11 → , has the form 

similar to (10) 

.

)(

11

11

11

11

1111

gg

gg

gg

gg

gggg
DC
g

FC
AC

FD
AD

FCDAm

−

−
÷

−

−
=

==

.                                         (42)        

 
The points gA1 , gF1 are base ones. The coordinates of all 

the points gggg FCDA 1111 ,,, are given by complex numbers 

as follows 
01

2
1 jgg AA += , 1

1
1

2
1 DDD jggg += ,  

1
1

1
2

1 CCC jggg += , 01
2

1 jgg FF += . 
 
In particular, the radius of half-rounds (41) defines the 
coordinates 1

2
1

2 , FA gg , that is, 

1
1

21
1

2 , rgrg FA =−= .  
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(a) 

 

 
(b) 

 
Fig.13 Regime change for Poincare’s model of hyperbolic geometry:  
half plane 0, 12 ≥gg  - (a); half plane 02 5.0, UUU ≥ - (b) 

 
 

For Poincare’s model of hyperbolic geometry by Fig.13(a), 
cross ratio (42) looks like  

 

1
1

1
21

1
1

1
21

D

D

C

C

D

CDC
g g

gr
g

gr
tg
tgm −

÷
−

==
θ
θ

.                        (43)                                               

 
Using (41), we get  
 

( ) 1
21

1
21

1
21

1
212

D

D

C

C
DC
g gr

gr
gr
grm

+
−

÷
+
−

= .                                     (44)                                             

 
This expression gives the subsequent value 

DC
C

DC
C

D

g
r

g

g
r

g

r
g

2
1

1
2

2
1

1
2

1

1
2

1+

+
= ,                                                      (45)                                

where the change of the hyperbolic transformation ratio is 
introduced as 
 

( )
( ) 1

1
2

2

2
+

−
=

DC
g

DC
gDC

m

m
g .                                                        (46)                           

This change corresponds to the points gC2 , gD2 of  the half-

rounds with parameter 2
1R  and so on. 

We can obtain the expression for the subsequent value of 
the transformation ratios 21, nn . To do this, it is necessary to 
apply to (45) the inverse change of variables relatively to (40) 

 

1

2
2

1

1
1 ,1

n
ng

n
ng =

−
= .                                                    (47)                                           

 
But difficult formulas are obtained. Therefore, using (40), we 
can directly calculate the subsequent value of transformation 
ratios 21, nn . 

Let us compare the half-rounds in the plane 12 gg with the 

half-rounds in the plane UU ,2 in Fig.13(b).  The points 

UA1 ,  UF1 are base ones.  The points UC1 , UD1 correspond 
to the initial and subsequent regime. It is possible to conclude 
that the half plane 02 5.0, UUU ≥ is also hyperbolic 
geometry model. Therefore, similarly to (44), the regime 
change has the view 

 

.

)(

max2
1

2

max2
1

2

max2
1

2

max2
1

2

max2
1

2
1

2max2

UU
UU

UU
UU

UUUUm

C

C

D

D

CDDC
U

−

+
÷

−

+
=

=−=
                            (48)             

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 192



 

 

Also, the following equality takes place 
 

( )2DC
g

DC
U mm = . 

 
Using (48), we obtain the subsequent value of the voltage 

DC
C

DC
C

D

U
U
U

U
U
U

U
U

2
max2

1
2

2
max2

1
2

max2

1
2

1+

+
= ,                                          (49)                                   

where the change of the voltage is introduced 
 

DC
DC
U

DC
UDC g

m
mU 22 1

1
=

+
−

= .                                               (50)                      

 
It now follows that 

1

1
2

max2

1
2

r
g

U
U DD

= .                                                                 (51)                  

 

C. Example 
Let the circuit parameters be given as follows 
 

50 =U , 1=iR , 22 =R , 5.21 ==U , 

1min1 =R , 1max1 =n . 
 

Scale value (38)  
 

414.1
1
2

2 ==refn . 

 
The initial regime, point 1C , is set by the first load resistance 

25.11
1 =R and second load voltage 707.01

2 =CU . 
Using (24), we get  
 





=
5.1
5.3

U . 

 
Further, we use the voltage value 5.31 =CU  because this 
value is greater than 5.25.0 0 =U . 
Maximum values (37)  
 

581.12.025.2
25.1
112

2
5

max2 ==−=U ,  

 
6324.02.02max2 ==n . 

 

Radius (41)  
 

447.02.01 ==r . 
 
Transformation ratios (25) 
 

714.0
5.3
5.21

1 ==Cn , 202.0
5.3

707.01
2 ==Cn . 

 
The normalized transformation ratios 
 

714.01
1 =Cn , 143.0

414.1
202.01

2 ==Cn . 

 
Hyperbolic transformation ratios (47) 
 

4.0
714.0

714.011
1 =

−
=Cg , 2.0

714.0
143.01

2 ==Cg . 

 
Let us check expression (41) 
 

2.02.04.0 22 =+ . 
  
Further, we are verifying the regime change for the given 

load resistance 1R .    

Let the subsequent regime, point 1D , be given  by the second 

load voltage 414.11
2 =DU and voltage 31 =DU . 

Therefore, we have 
 

833.0
3
5.21

1 ==Dn , 333.0
414.13

414.11
2 =

⋅
=Dn ,  

 

2.0
833.0

833.011
1 =

−
=Dg , 4.0

833.0
333.01

2 ==Dg . 

 
Regime change (43) 
 

8528.6618.2
2.0

4.02.0
4.0

2.02.0
==

−
÷

−
=DC

gm . 

 
Regime change (44) 
 

( ) 8528.6
4.02.0
4.02.0

2.02.0
2.02.02

=
+
−

÷
+
−

=DC
gm . 

 
The change of hyperbolic transformation ratio (46)  
 

7453.0
18528.6
18528.6

2 =
+
−

=DCg . 
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Subsequent value (45) 
 

2.0
4.08944.0

7453.0
2.0

2.01

7453.0
2.0

2.0

1

1
2 ==

⋅+

+
=

r
g D

. 

 
Regime change (48) 

             

8528.6
581.1707.0
581.1707.0

581.1414.1
581.1414.1

=
−
+

÷
−
+

=DC
Um .                                                                                                                                

 
Equality (51) 
 

8944.0
4472.0

4.0
581.1
414.1

== . 

 

IV. CONCLUSION 
Non-Euclidean geometrical interpretation of graphical 

charts defines the load regime parameters and describes the 
movement of an operating point along the regulation 
trajectories. 

Obtained expressions can be generalized for three or more 
loads. 

From the methodological point of view, the presented 
approach is applied for a long time in other scientific areas, as 
mechanics (the principles of special relativity), biology (the 
principles of age changes of plants and organisms). 
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